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SUMMARY 

Ever since the expansion of the finite element method (FEM) into unsteady fluid mechanics, the ‘consistent 
mass matrix’ has been a relevant issue. Applied to the time-dependent incompressible Navier-Stokes 
equations, it virtually demands the use of implicit time integration methods in which full ‘velocity-pressure 
coupling’ is also inherent. The high cost of such (high-quality) FEM calculations led to the development of 
simpler but ad hoc methods in which the ‘lumped‘ mass matrix is employed and the velocity and pressure are 
uncoupled to the maximum extent possible. Resulting computer codes were less expensive to use but suffered 
a significant loss of accuracy, caused by lumping the mass when the flow was advection-dominated and 
accurate transport of ‘information’ was important. In the second part of this paper we re-introduce the 
consistent mass matrix into some semi-implicit projection methods in such a way that the cost advantage of 
lumped mass and the accuracy advantage of consistent mass are simultaneously realized. 
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4. DISCRETE PROJECTION METHODS* 

In this second part of the paper we go from semi-discrete to fully discrete in the form of several 
finite element methods that we have designed and tested. In addition to implementing some of the 
projection methods discussed in Part 1, we also introduce a variation on the GFEM that utilizes 
the consistent mass matrix in a cost-effective way. That is, the object of the second part of this 
paper, besides implementing some of the techniques derived above, is to put the ‘mass’ back where 
it belongsdistributed according to the Galerkin principle-not concentrated at node points as it 
is in the lumped mass approximation used in our (and many others’) most recent FEM schemes 
for solving the time-dependent incompressible Navier-Stokes equations-see Gresho et al.’ for an 
explicit time integration method and Gresho and Chan2 for a semi-implicit one. 

The numbering of sections, tables and figures in this paper follows on from that of Part 1. 
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4.1. The GFEM on the Navier-Stokes equations 

We demonstrated in our first publications on the subject of finite elements in  fluid^^.^ that 
advection-dominated flows received a marvelous blessing when linear basis functions (1D) were 
employed (bilinear on quadrilaterals in 2D, etc.) in the Galerkin finite element method (GFEM). 
The blessing took the form of an extraordinarily accurate semi-discrete scheme for tracking 
parcels of ‘material’ that are carried by the fluid-typically observed as small phase speed errors 
(or group velocity, when analysed more properly5): i.e. consistent mass (CM) simulations (CM is a 
by-product of GFEM) display much smaller phase speed errors and therefore less of the related 
and cursed wiggle generator (dispersion) than do their (ad hoc-non-GFEM) lumped mass (LM) 
counterparts. This error is often described in terms of a Taylor series analysis that shows 
‘superconvergent’ behaviour (fourth-order spatial accuracy) for 1D linear elements with CM for 
pure advection on a uniform mesh and only second-order for LM. While useful, this analysis is 
somewhat misleading because it also says that the accuracy of both (CM and LM) drops to first- 
order on any non-uniform grid. But the CM solution is still quite accurate (and the LM still quite 
inaccurate) on such meshes6* and shows (again) that Taylor series methods, while still useful, do 
not tell the whole story and can even be misleading. The main point is that CM on advection is a 
coveted attribute. The above references were focused on the scalar advection-diffusion equation. 
In Gresho et a1.* we showed the superiority of CM over LM when Karman vortex shedding was 
simulated by solving the Navier-Stokes equations. 

Of course the CM approach practically demands the use of implicit time integration methods 
since it couples the time derivatives in the resulting ordinary differential equations (ODES), and 
this is probably the main reason why the ad hoc approximation of mass lumping (e.g. by summing 
the rows of the CM matrix and placing the results on the diagonal) is ever employed. So, if one can 
‘afford’ or justify for other reasons implicit time integration methods, CM is fine-the lunch really 
is free. And there is an interesting paradox here in that CM is desired for the hyperbolic end of the 
spectrum (advection-dominated; large Pe or Re), yet most common wisdom seems to suggest that 
explicit time integration methods are then more appropriate owing to the notion of ‘rate of 
information transfer’ or ‘domain of influence’ (- 1 grid point per time step, etc.); at the other end of 
the spectrum (diffusion-dominated; low Pe or Re), however, CM is less needed (its gains in 
accuracy are not really so pronounced, though it does have other advantages there such as sending 
out wiggle signals’). Yet these are the problems for which the diffusive stability limit of explicit 
schemes definitely favours implicit time integration techniques! C‘est la vie. 

While the discussion above is valid for both advection-diffusion-a scalar equation-and NS (a 
vector system of equations), it can be especially costly to apply implicit time integration methods 
to the latter (for any Re) since these necessarily couple all velocity components and the pressure, 
thus leading to large linear (and non-linear) systems to be solved at each time step. For this reason, 
many NS ‘solvers’ avoid the use of fully coupled, implicit time integration, such as backward Euler 
or trapezoid rule (TR), in favour of explicit schemes (such as forward Euler or Adams-Bashforth) 
or semi-implicit schemes-sometimes couched in phrases like ‘splitting schemes’ or ‘fractional step 
schemes’ or ‘projection methods’. The typical semi-implicit scheme will use-consistent with the 
above remarks-an explicit scheme (e.g. forward Euler or Adams-Bashforth or leap-frog) for the 
advection terms and an implicit scheme (typically backward Euler or TR) for the viscous term. A 
key objective of these semi-implicit schemes is to reduce the intense coupling and thus permit the 
sequential solution of smaller and linear systems. The pressure-an inherently implicit variable in 
incompressible flow-is obtained by forming and solving a Poisson equation, which we call the 
pressure Poisson equation (PPE), when in fact it is used to obtain pressure rather than some 
related potential function. 
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The objective of the present research is to recover the consistent mass approach in the NS 
equations in a cost-effective way, a goal that we have already attained for the advection-diffusion 
equation.2 However, the semi-implicit approach for the NS equations seems to ‘require’ lumped 
mass in order to be even viable, let alone cost-effective. And indeed, virtually all NS codes to date 
have employed the lumped mass approach when using the PPE. But we have discovered and will 
demonstrate that a partial return to consistent mass-where it is needed the most (the advection 
process)--is achievable in the context of a cost-effective semi-implicit method employing the same 
lumped mass matrix for the discrete PPE. (It turns out that it is just as easy to use consistent mass 
on the viscous terms as well, so we do so.) Our first reports on this research effort appeared in 
Gresho and Chan,’O* wherein several of the new schemes are described and demonstrated. This 
paper presents our ‘final’ report on our foray into the area of semi-consistent mass (or mixed mass) 
methods, and we introduce virtually all of the schemes that we have seriously considered, mention 
why we dropped some, focus on the remaining useful schemes, and present some results and offer 
conclusions. All of our work has thus far been restricted to 2D, so that is all we discuss herein. The 
extension to 3D is ‘straightforward’ (as they all say), but we have not yet found the time to do so. 
We also focus on a single ‘element’ herein, the 4/1 element, in which bilinear basis functions are 
used for velocity and piecewise-constant basis functions are used for pressure. 

We emphasize at the outset that all of these ideas were originally directed towards transient flow 
simulations, and especially those in which some identifiable quantity (such as a vortex or  a cold 
front) is advected (though non-linearly) by the flow, and it is desired to retain the high accuracy of 
the CM of the GFEM for this process. The techniques are not proposed to solve low-Reynolds- 
number problems or those for which time-dependent advection accuracy is of less importance. It is 
especially true that the schemes are neither derived nor recommended to solve steady flow 
problems-advection-dominated or not- via time marching. (For these cases we would advocate 
LM via the semi-implicit Projection 2 method.) Indeed, our new compromise techniques (semi- 
consistent mass, SCM) could be said to deliver the ‘wrong’ answers (relative to GFEM and for 
finite Ax) at steady state (SS)-and at increased cost! However, while they are then (still) not 
GFEM, they are (still) consistent approximations and thus do deliver convergent results at SS- 
and surprisingly good ones, in fact-as we will demonstrate. 

If the conventional GFEM (see e.g. Gresho et a l l 2 )  is applied to (I), the results are given by the 
following system of differential-algebraic equations (DAEs-see e.g. Petzold and Lotstedt’ 3): 

Mri + N ( u ) u  = f -  Ku- CP, 

CTU = g, 

where now u is a vector containing all of the (unspecified) velocities, P is a vector of pressures, M is 
the CM matrix (Mij=fn$i$j, where qk is the finite element basis function for node k) and is 
symmetric positive definite (SPD), C is the gradient matrix (actually the gradient operator is 
M - ’ C ,  a fact that will play a major role later), its transpose is the (negative of the) divergence 
matrix, K is the viscous or Laplacian matrix, which is also SPD, and N(u)  is the advection matrix 
(again it is M - ’ K  that actually represents -vV2 and M - ’ N ( u )  that actually represents u.V).  
FinallyJis a vector that includes the BCs on velocity (from both (lc) and, when F,#O or F,#O,  
from (Id)), as is g (it includes the BC given by (lc) and is generated by transposing those portions of 
C?u = 0, where cT is the ‘full’ divergence matrix-including all boundary nodes-to the RHS when 
forming the ‘condensed’ system; see Gresho et al.14 for details). The initial condition and the 
analogue of the solvability constraints (If) and (Ig) are given by 

u(0)=uo with the constraint C’u,=g,. (434 
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(The constraint (1h)-when applicable-is carried over to the semi-discrete system as z . g j ( t )  = 0, 
which represents the discrete version of global mass conservation.) 

Just as (1) implies (2), so does (43) imply the discrete analogue of (2), namely 

(CTM - ' C)P = CTM - ' [ f- K u  - N(u)u] - 1, (44) 
the discrete PPE, complete with BCs (2b) and (2c) (i.e. they are 'built-in' to the linear algebraic 
system)-see e.g. GS for details.36 Again, as in the continuum, the solution of (43) gives the same 
(u, P )  as that of (43) with (43b) replaced by (44band  again only if due precautions are taken (i.e. all 
solvability constraints are respected). 

We will omit (43b) in the sequel and work with (44) since it leads to the desired uncoupling of the 
velocities from the pressure. 

Remarks 

1. Since M - '  is dense, the CM approach of GFEM is not very viable if (44) is actually used; i.e. 
the PPE approach seems to demand mass lumping-as we and many others have done- 
with the attendant loss of phase speed accuracy for the advection process. 

2. If the LM approximation is used, the sparse banded CM matrix M is replaced by the 
diagonal matrix (Mij=GijSn&i, where bij is the Kronecker delta) whose inverse is also 
diagonal. 

3. Fully implicit schemes are more appropriately applied to the coupled system of (43), in which 
CM is quite cost-effective (partry because (43) is already expensive to solve). 

4. In many simulations, g is constant in time (e.g. specified and constant inflow velocity) and 
thus g = 0; we carry the time-dependent Dirichlet BC case for generality. 

4.2. The modijied FEM equations and semi-implicit time integration 

Thus far we have merely set the stage by reviewing the conventional GFEM. Now we take the 
(bold?) step of modifying (43a) in such a way that the advection process (at least) is treated via CM. 
But we wish also to use (44) instead of (43b), in which CM is 'out'. So we make the a priori 
assumption that a lumped mass matrix in the PPE-on the LHS only-is a viable approach, 
whether or not it is cost-effective; i.e. we assume that an LM approximation to the pressure 
gradient will not seriously degrade accuracy if we can use CM elsewhere. All of these words can be 
more precisely stated by replacing (43a) by the (admittedly ad hoe) momentum equation 

U + M L  C P =  M -  ' [f- K u  - N ( u ) u ] ,  (45) 

wherein M is the CM matrix and M ,  is the LM matrix, in which the following obvious 
interpretation is stated for emphasis: the processes of advection and diffusion (and BCs) are 
treated consistently-note that M -  ' has the interesting feature of coupling all nodes in the entire 
grid, since a global approximation to advection and diffusion is implied in the acceleration with 
CM-while that of the pressure gradient is treated 'inconsistently' (i.e. via LM); the matrix M L ' C 
is a local, but legitimate, approximation to V-almost everywhere; see below. 

Remarks 

1. M L ' C  is not an approximation to V on r,-because of (2c). 
2. Rearrangement of (49, solely for suggesting alternative interpretations, to either 

MU + K u  + N ( U )  u + M M L C P  =f 
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or to 

MLU + C P  = M ,  M - ’ [ f - KU - N(u)u] 

introduces two (unsymmetric) matrices that, curiously, are transposes of ‘averaging’ 
matrices. That is, both M M = M and its inverse M - ’ ML= A- are averaging matrices in 
the sense that each row sums to unity. Also, whereas M i j 2 0  for all i, j ,  M i 1  contains 
negative entries (because M - I  does), although all of the diagonal elements are positive. 

3. Further rearrangement gives another equivalent form, 

aa + Mi [Ku + N(u)u]  + A(M, 1 CP) = M ;  ‘f, 

which, while cumbersome, has the interesting and more useful interpretation that the 
advection, diffusion and source terms are pointwise approximations (u la simple finite 
difference methods), but the acceleration and pressure gradient are aoeraged approxim- 
ations. (For GFEM this interpretation says that only the acceleration is an averaged 
quantity.) 

4. d, its transpose and its inverse each approximate the identity matrix as Ax-0 in the 
following sense: The action of A on a vector returns that vector to within O(Axbor  perhaps 
O(Ax2) on a uniform mesh. M u  = u+ O(Ax) for u ‘sufficiently smooth‘, ie. for vectors that are 
sufficiently well approximated by a linear combination of the eigenvectors from the ‘low end’ 
of the spectrum of ML and (especially) of M. (This remark applies to the bilinear elements 
employed herein; higher-order elements may give higher-order results.) 

5. If a steady solution is attained, it too is a function of both mass matrices (set 3=0 in (45)), a 
perhaps suspicious result. 

6. Even the Stokes problem (N = 0) is no longer symmetric, another denigrating observation. 
7. It may be worth pointing out that the modified momentum equation idea is-thus far at 

The effect of this change (i.e. (43a) to (45)) is to change (44), using (43b), to the SCM PPE 

least-completely independent of the solution method, projection or otherwise. 

(CTML C ) P  = CTM - [ f- KU - N(u)u] - 4, (46) 

in which the ‘Laplacian’ CTM;  C = A is formed (easily, and only once per problem-as usual) 
from the LM matrix, while the RHS must (it seems) use consistent mass, and one may rightly 
query: ‘Have you really gained much since the RHS is still ‘impossible’ (i.e. costly) to form?’ The 
answer to this cogent question is: ‘We will gain something because we will not need to form the 
RHS of (46) directly’; this issue has in fact been a principal focus of this research. And this leads to a 
discussion of solution methods for (45) and (46); we have considered several approaches, all based 
on solving (45) with a semi-implicit technique (implicit for diffusion, explicit for advection). We 
favour the second-order-accurate and non-dissipative TR and usually use it in our code, and do in 
the examples to be presented later, but the backward Euler (BE) scheme is simpler to describe (and 
we also have it in our code), and we will do so here. (The switch to TR is of course effected simply 
by replacing Ku,+ on the LHS of the momentum equations below by +Ku,+ and subtracting 
f Ku, from the RHS.) 

As in the continuum, it is useful, analytically, to rewrite (formally) and interpret (45) and (46) as a 
projection, this time in a finite-dimensional space. To this end we first ‘solve’ (46) for P and place 
the result in (43, yielding the equivalent continuous-in-time ‘projection’ ODE 

Zi + M L  C A  - ’ { CTM - [ f- KU - N(u)u] - S }  = M - [ f- KU - N(u)u] 
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or 

ti= P M - '  [f-Ku- N(u)u]+ M ,  ' C A - ' g ,  

M L C P  = QM - [f- K U  - N (u) U ]  - M < ' C A  - 'gj, 

(47) 

(48) 

and the associated pressure gradient 

where @ = I  - M <  ' CA-'C' and Q = I - p are now projection matrices, 63' = p and Q2 = Q. Note 
that (47) +(48) = (45), analogous to the continuum projections. Again, for a more detailed 
discussion of the properties of these projections, refer to the Appendix-since most of those details 
are not actually required in the sequel. All we need to emphasize here is that (45) and (46) CI (47) 
and (48), with the former pair leading to algorithms and the latter pair used in analysis. 

4.2.1. Global energetics and stability. The modified equations modify, not surprisingly, the 
global conservation laws that are built into the discrete equations. Clearly it is important to show 
(or at least to know) that (45) and (46) are both consistent and stable. To examine stability in the 
simplest way, letfand g be zero in (43) and (45); i.e. we are considering a 'spin-down' in a closed 
container (r, = 4 and u = 0 on r). First, take the inner product of (43a) with the velocity vector to 
get the GFEM version of global energy transfer, i.e. the 'goal': 

E'+U'N(U)U+U~CP= -u'Ku, (494 

where E = uTMu/2 is the kinetic energy. This equation has the following interpretation after we 
insist that N is a skew-symmetric matrix (for simplicity, if not for necessity; see e.g. Lee et al." for a 
discussion of how to do so): (i) uTNu=O (for any skew-symmetric matrix), which says that the 
advection process in the closed box properly does not contribute anything to the kinetic energy 
balance; (ii) u'CP = PTCTu =0, the pressure gradient (also properly) doesn't either; and (iii) since K 
is SPD, viscosity causes a monotonic decay (via viscous dissipation) of kinetic energy. This 
behaviour, 

E= -u'Ku<O, (49b) 

is of course consistent with the continuum equations and also shows that the DAEs of (43) are 
stable. 

Next, repeat the procedure with the modified equation (45). We get either 

l d  
- - u'MLu + uTM,M- 'N(u)u + uTCP = - u'M, M -  ' K u  
2 d t  

or 

I d  
--u'Mu+u'N(u)u+u'MML'CP= -u'Ku, 
2 dt 

and the interpretations of stability and energy transfer/balance are more obscure. For example, we 
now have two norms to consider: one based on M ,  and the other on M ,  with the latter making 
more sense in more terms. In neither are we able to be very definite about 'energy statements' since 
the matrices M , M - ' N  and M , M - ' K  are indefinite. (Even though M - ' K  has real positive 
eigenvalues and M -  ' N has purely imaginary ones, the quadratic forms are still indefinite; perhaps 
further effort will produce more useful results, but we do not yet have them.). All we can say for 
sure is this. 

(i) uTCP=O and thus the pressure gradient plays no role in the M,-norm. 
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(ii) The advection term plays no role and the viscous term still dissipates kinetic energy in the 
M-norm. 

(iii) If u is stable in one norm, it is in the other as well. 

Thus 

E + u T M M ,  ' CP= -uTKu GO 

is the strongest statement that can be made. Similarly, attempts to show stability via the matrix 
method (eigenvalues < 1) have thus far proven intractable. About the only 'defence' we have at this 
time is that experimental evidence at least suggests stability; i.e. the 'energy' does seem to remain 
bounded. It must be the fact that both M,M-'  and MM,' (its inverse) tend to approximate (in 
the appropriate sense) the identity matrix that is saving us; i.e. if M M ,  =I + O(Ax) or better, the 
spurious 'pressure work' term in the M-norm above becomes uTIZ+O(Ax)]CP= 
PTCT[Z + O(Ax)] u = O(Ax) to give E = - uTKu + O(Ax)-at least 'fine mesh' (viscous) simulations 
are likely to be stable. Indeed, it is this property (MzZ) that is also needed to permit both 
consistency and meaningful steady solutions, for which ML1 CP= M - '  [f- Ku- N ( u ) u ] .  

So-at least for the time being-we are stymied regarding theoretical stability results for any of 
the schemes presented below that solve (45) and (46) approximately. We can only report 
experimental evidence that strongly suggests that the DAEs are stable and that our time 
integration techniques are at least conditionally stable. 

Finally, we shall demonstrate consistency for each of the schemes used to 'solve' (45) and (46). 

4.2.2. A semi-implicit pressure Poisson equation scheme (PPE) . Before actually embarking on 
fully discrete projection methods, it seems appropriate, and useful, to show how to obtain a 
solution to (45) and (46) using but a small and inexpensive (multiply CP  by M M ,  I )  modification 
of our earlier LM semi-implicit method that is even somewhat surprising. (Also, we coded and 
tested it.) This scheme follows almost directly from our earlier one,' in which M L  is indeed (still) 
used on the RHS of the PPE. Starting with n=O and CTu,=gO: 

(1) Solve AP, = CTM,' [f,- Ku, - N(u,)u,-(g,. - CTu,)/At for P,,. 
(2) Solve M(u,+,-u,)/At+Ku,,,=f,-N(u,)u,-MM~'CP, for u , + ~ ;  i.e. solve 

(3) Bump n and go to Step (1). 

Remarks 

1. Even though CTu,=go, CTu,#gn for n>O. We return to this issue below. 
2. We use a direct (skyline/profile) method' to solve the PPE (both here and in the schemes to 

follow) whenever possible, which includes essentially all 2D problems (for 3D we usually use 
an ICCG solver; see e.g. Gresho16). 

3. The matrix multiplying u ~ + ~  is SPD, and the conjugate gradient method with diagonal 
scaling (preconditioning) works well (again, both here and in the schemes to follow); e.g. 
'convergence' generally occurs in 1-10 iterations using 

(M+AtK)u,+ 1 =MU, +At[f,- N(u,)u,  - M M ,  ' CP,]. 

11 6u 11 / 11 u 11 < and )I residual 11 / 11 RHS 11 < lop4. 

4. The velocity components are obtained sequentially: first u, then u. 
5. The viscous matrix contains a balancing diffusivity tensor (BTD) term uiujAt/2, where ui is 

the (current time, t,,) ith Cartesian velocity component, which is added to the physical 
viscosity (v) in order to balance the destabilizing truncation error incurred when FE (forward 
Euler) is used on the advection terms. This technique, discussed in Gresho et al.' and Gresho 
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6. 

7. 

and Chan,' stabilizes the scheme up to CFL numbers (uAt /Ax)  of about 5-10, and there is no 
diffusive stability limit. 
The 'penalizing' divergence term CTu,/At,  but not g,/At,  on the RHS of the PPE in step (1) is 
crucial to the success of the scheme-ven more so than it was in the LM version of Gresho 
and Chan.' 
There is evidence, but no proof, that a projection of u , , + ~  from this scheme is very close 
(identical?) to u,+ from the Projection 2 scheme described below. 

Consistency analysis. Following on from Remarks 1 and 6 above, let us analyse the scheme both 
to assure consistency with (45) and (46twhich  may at this point appear to be impossible-and to 
see how the (discrete) divergence of u behaves. To start, we rewrite step(2) in terms of the 
projection operator (matrix), after defining F ,  - N(u,)u,:  

Next, form the divergence, noting that CTQ = C T :  

CTu g n +  1 
C T ( U n +  ' -") = CT[M- (F,  - Ku,+ 1) - M i  ' ( F ,  - Ku,)] -L+-, 

At At At 

and the 'crucial' cancellation of CTu,/At leads to 

CT U, + = AtCT [ ( M  - ' - M L - I )Fn - ( M -  'Kun + 1 -Mi ' Kun)I + gn + 1, 

which, assuming M - ' - M ; ' = O ( A x )  and u,+' =u,+O(At) ,  gives C T ~ , + l - g n + l  =At [O(Ax)  
+ O(At ) ] ,  where the O(Ax) term is a direct result of the mixed mass matrices. This is as close as this 
scheme can come to satisfying (43b). Some of this divergence error is even present at steady state, 
again owing to the mass mixing. (For LM, used in our first semi-implicit scheme, CTu - g = O(At') 
and vanishes at steady state.) 

Next, inserting the divergence result (at t,,) into the PPE (step (1) of the algorithm) gives 

AP,  = C'M; '('F, -Ku,)+ C T [ ( M - '  - M  L -' )Fn - 1 - ( M  - 'Kun - ML ' Kun - 1 )I - ( g n  + 1 -gn)/At, 

where it is important to note, and even worth proving, that it is in fact the (non-zero) divergence of 
CTu, in the above divergence equation (i.e. CTu,#g,)  that actually conoerts it from an LM PPE 
(which is the PPE actually solved by the computer) to an SCM PPE (which is the PPE required by 
the theory). To see this conversion, rearrange the above PPE to 

AP,  = CTM- ' (F , -  1 - Ku,)+ CTM, ' [(F,,- F,-  1 )- K(u, - u,- I ) ]  - ( g n +  1 -g,)/At,  

perform a Taylor series expansion about t ,  to obtain 

At 
2 

AP,= C T M -  ' (F, -KU,) -AtCTM- 'F, + AtCTM,  ' (F,- KU,,)-g,-- 4, + O(At'), 

and pass to the limit to obtain (46). 

the above algorithm) yields, after some 'algebra', (47), and thus (459, as At+O. 
In a similar way, inserting the above pressure into the momentum equation (i.e. into step (2) of 

Remarks 

1. The lack of a divergence-free solution is not an asset-though it isn't either in the LM version 
(i.e. that of Gresho and Chan') and that scheme usually works quite well-albeit with the 
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advantage of one order (in At) smaller divergence and no SS divergence error. Both ofthese 
schemes 'work' because ( i )  the PPE is properly penalized-and ( i i )  the BHM saves the rest. 

2. The start-up of this scheme is not smooth: P ,  - Po = O( 1) in At as At-0 because Po is an LM 
pressure and P, is an SCM pressure; it is also true though that PI -P ,=O(Ax) .  In fact, 
A ( P ,  - Po)= CT(M-' - M i  ' ) ( F , - K u , )  for At+O. Ironically, this discontinuity is caused 
by the divergence-free initial condition; i.e. we begin with u, satisfying (43c). After step (l), 
however, the pressure is smooth-P, + , - P, = O(At)  for n 2 1-and the velocity is no longer 
divergence-free; also, P,+ , satisfies (46), at least for At-0. The appropriate 'remedy' for this 
inconsistency (if one is really needed) may be to just take one very small time step and report 
the pressure there as the 'initial' pressure. Finally, if one computes the initial pressure using 
CM on the RHS, via A P ,  = CTM - ( F ,  - Ku, )  - ( g ,  - g o ) / A t ,  which we have tried, the 
results are worse yet-it then requires two time steps to 'recover', the first step ( P , )  being an 
LM result. 

3. If S S  is attained, it satisfies (45) with t i = O  as well as (46) with @ =O. But it is also true that it 
does not satisfy (43b); in fact, 

(C' u - 9) = At CT( M - ' - M L ) [ f -  KU - N (u) U] = 0 (At) 0 (AX) .  

4. The semi-discrete version of BTD (i.e. continuous in space, discrete in time) leads to the 
following result: 

which is O ( A t 2 )  and vanishes at steady state. 
5. At the end of the day, we shall reject this scheme. 

4.2.3. Projection I .  This scheme is a simple and nearly direct extension of Chorin's famous17 
projection scheme into FEM using mixed mass matrices, and was first introduced in Gresho and 
Chan.I0 The essence and beauty of this scheme lie in its simplicity. Given a divergence-free velocity 
u,, the first-order projection scheme is, starting with n =0: 

(1) Solve 

M(ii - U,) + KG =f. - N(u,)u,  
At 

for the intermediate velocity field; i.e. solve (M + AtK)f i  = Mu, + At [f, - N(u, )u , ]  for ii. 
(2) Project u' onto the divergence-free subspace and simultaneously obtain the pressure 

field as follows: solve i i=u,+,  + MLICq and CTu,,+,=gn+,; i.e. first solve 
(CTM,'C)cp=CTfi-g,+, for cp and then compute u,+,=u'-MM,'Ccp. 

(3) (Optional) Compute p= rp/At. 
(4) Bump n and go to Step (1). 

Remarks 

1. Remarks 2-5 for the PPE scheme also apply here. 
2. The scheme is a CM predictor and an LM projector/corrector, i.e. a sort of 

predictor<orrector where the corrector is a projector. The projection step can be formally 
expressed as 

u,+, = @ii+MLICA- 'g,,+,, 
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which defines u,+ as an affine transformation on 2. (While p is still a valid projection, we are 
usually-for g #&more interested in the closely related affine transformation.) But since 
w = ML1 CA-’g ,+  satisfies pw=O, this affine transformation could also be called a 
projection in the sense that u, + = pu’ + w implies pun+ + w = u,+ 1, a result we shall use 
below. 

3. Unlike the semi-implicit PPE scheme, the velocity is always divergence-free-ven if it did 
not start out that way; see Remark 8 below. 

4. Another difference (besides CM) from Chorin’s method regards intermediate BCs: whereas 
he (and others as well, e.g. Kim and MoinI8) generated special BCs for the intermediate 
velocity field that produced both penetration and slip at solid walls, we use the same BCs for 
u” as are used for u-i.e. the physical BCs-as discussed earlier. Also, as also discussed earlier, 
we overspecify the tangential velocity during the projection step. But see also the following 
remark. 

5. If Ku’ in the first step were replaced by Kun, we would have the simple forward Euler scheme. 
(The forward Euler method is in fact the simplest projection method; it is also more ‘honest’ 
than semi-implicit projection methods in that it more rigorously enforces the no-slip 
condition.) Such a scheme was in fact introduced by Donea et a l .19 ,20  in the LM 
approximation, except that they modified the forward Euler method to preclude the 
spurious pressure mode by permitting some slip-see also Gresho.” 

It is interesting to note that Donea et al. modified a forward Euler method to eliminate the 
checkerboard (CB) pressure mode in a way that seems somewhat illegitimate, and that we 
modify the projection method in an ‘equally illegitimate’ way (overspecifying the BCs) to 
save coding and computing but which retains the CB mode that we could have legitimately 
precluded! Considering some of the admonitions put forth in Sani et al.” regarding the CB 
mode, we should probably change our own codes. 

6. P‘ is indexless because it is an ‘intermediate’ pressure, here in the sense that the time level at 
which it applies is ambiguous. It can be shown, however, that if the true end-of-step pressure 
(at t n L l )  is computed from (46), then P , + l - ~ = O ( A t ) .  It is also true, however, that 
P , - P = O ( A t )  but with a different constant, where P ,  also comes from (46). So we see 
that really is O(At)  away from any physical pressure of interest, and perhaps that is all 
that matters. (It is indeed an intermediate pressure.) Similar remarks apply to u’. 

7. The eflectiue pressure gradient, which would even be accurate-to O(6’kon rl,  is easily 
derived to be 

GPI,,, = M i  ’ ( M  + A t K ) M ,  Cp, 
which is even computable, and is the discrete analogue of Pcff =(I -6 ’V2)P , ,  that was 
presented earlier for the semi-discrete system. 

8. It is no longer necessary (but still advisable) to satisfy the original solvability constraint 
CTuo = g o .  This scheme, like the backward Euler scheme (on (43), or on (45) and (46)), is 
oblivious to the well-posedness of the initial data. They each have the (convenient?) 
property-and one that has probably fooled some CFD practitioners-of converting any 
initial velocity field (well-posed or not) into one that is  divergence-free at the end of the 
first time step (and evermore), with the result that the transient flow actually computed 
may be very different than the one imagined; See Gresho (1991).37 

In fact, if CTuo#gO and At is small, both Projection 1 and BE would project uo to the 
divergence-free subspace in their respective ‘appropriate’ manners: u1 = pu, + M i  C A  - ‘ g l  
+O(At )  for the former and u1 =&uo+ M-’C(C’M-’C) - ’g ,  +O(At )  for the latter, where 
p, is the CM version of the LM projection matrix, pE~Z-M-lC(CTM-lC)- lCT,  each 
giving CTu, = g 1  and u1 - uo = O(  1) in At since uo was ‘improper’. But each would also deliver 
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a very large pressure: P, = 0(1 /At ) .  (For 'large' At the projections are not so simple to state.) 
Clearly a lumped mass BE scheme (generally not a suggested approach) would deliver-to 
O(At)-the same u1 as does Projection 1. 

9. While the scheme was designed for time-dependent advection-dominated flows, it is also of 
interest to see how it behaves for flows that reach steady state (SS). It turns out that if an SS is 
attained, it is a function of At and both mass matrices: 

[K + N ( u ) ]  u + ( M  + A t K ) M ,  ' CP =J 
u i s - h i s  the GFEM result from (49, 

[ K + N(u)]  u + CP =S, 

with both results also satisfying CTu =g. 
Note that the continuum (in space) version of the above Projection 1 result, using 

(M-'K)- -vV2, is u ~ V u + ( I - v A t V 2 ) V P = v V 2 u ,  a result that also applies to the original 
schemes of Chorin" and Temam,23 and that we earlier called (in the time-dependent 
version) the modified/perturbed momentum equation. Finally, the divergence of this 
equation yields (I - vAtV2)V2P= - V * (u * Vu), the BHE discussed earlier. 

Consistency analysis. Since the underlying DAEs are by no means obvious for this scheme, nor 
is it obvious that they even represent a legitimate approximation to the NS equations, it is 
important to derive them by analysing the scheme for At-0. (It is of course also necessary to test 
them on the computer-i.e. using finite At.) Towards this end we begin by writing the scheme in 
the equivalent form 

ii = ( M  + AtK)- '  { M U ,  + At [f. - N(u,)u,]  }, 

u,+ = pii + ML ' C A -  'gn+ '. 
Now let At-0 to obtain 

u,+ 1 = p {u, + A t M -  ' [f. - Ku, - N(u,)u,]  - A t Z M - ' K M - '  [f, - Ku,  - N ( u , ) u , ] }  
+ ML1cA-lg,+ + o ( ~ t 3 ) ,  

from which it is clear, using pu, = u, - M L ' C A  - 'g,, that (47) is recovered, and thus (45) and (46) 
are recovered as At-0;  the scheme is indeed a consistent approximation to the desired DAEs. 

4.2.4. Projection 2. A seemingly unattractive aspect of Projection 1 is that the pressure 
gradient is completely disregarded/discarded in the computation of J-a feature that seems to 
want to send J farther than necessary away from a true (and divergence-free) velocity. So we 
introduce a discrete version of Projection 2 with nearly consistent mass, a scheme that improves 
the accuracy by providing a good-yet-inexpensive estimate of the pressure gradient in the 
computation of fi. 

The Projection 2 algorithm is the following, starting with n = 0. Given u, and P ,  with CTu, = g,: 

(1) Solve 

for the intermediate velocity i.e. solve 

( M  + AtK)ii,+ 1 =MU, + At [f. - N(u,)u,  - MM, C P , ] .  
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(2) Project fin+ and update the pressure as follows: solve 

ii,+ =u,+ + M i '  Ccp and CTu,+ = g n +  1; 

i.e. first solve Acp=CTi i ,+ l -g ,+ l  for cp, then compute ~ , + ~ = i i , + , - M ; ~ C q ;  finally, 
compute P,+ = P ,  + 2cp/At. 

(3) Bump n and go to Step (1). 

Remarks 

1. Remarks 1-4 for Projection 1 also apply here. 
2. For start-up (n=O), a mass matrix problem must be solved to obtain P o  from 
APO=CTM-'[fo-KuO-N(uO)uO]-gO, where CTuo=gO.  This is done in our code as 
follows: (i) solve Mx=& -Kuo - N(uo)uo for x using the diagonally scaled conjugate 
gradient method; (ii) solve AP,  = C T x  -go for P o .  (An alternative start-up procedure is: use 
Projection 1 and a very small initial time step.) Note that, unlike Projection 1, CTu0 = g o  is 
indeed a firm requirement-as it is for the DAEs given by (43)-thus making it a more 
'honest' scheme. 

3. The intermediate velocity is closer to u , + ~  than it is to u,: u,+' -fin+' = O ( A t 2 )  and 
I&+ - u, = O(At). This is the reason we endow it with a time index, uis-ci-uis Projection 1. 

4. The eflectiue pressure gradient for this scheme is 

GPI,',- M i  ' M M  ' C P ,  + Mi ' ( M  + A t K ) M ,  ' C(P,+  1 - P , ) / 2  
= M ~ ' M M ~ ' C ( P , + P , + l ) / 2 + O ( A t 2 ) .  

5. If an SS is attained, it too (like both PPE and Projection 1) will be a mixed mass result; but 
unlike Projection 1 it is independent of At, and unlike PPE it is divergence-free. It is given by 
(45) with l i = O  and by (46) with g = O ,  so that it satisfies (43b) as well. 

Consistency analysis. Letting F, - N(u,)u,  again, we have 

fin+ 1 =(I + A t M - ' K ) - '  [u, + At(M- 'F ,  - M i '  CP, ) ] ,  

U, + = pii, + + M i  ' C A  - ' 9 ,  + 1.  

For small At these yield 

ii,+ 1 =u, + At(Z- A t M -  'K)a", + 0 ( A t 3 ) ,  
where 

a",, = M - ( F , -  K U , ) -  M L I  CP,,  

and the tilde on a", is used to remind us that it is not a divergence-free acceleration. (In fact, 
CT2,  - g, = O(At),  as will be seen below.) Finally, 

u,+ 1 =u, + M L ' C A -  ' ( g n +  1 - g , ) +  Atpf i ,  + O(At2) ,  

where we have (again) used pun = u, - M i  ' C A  - ' 9 ,  . But since p M i  ' C = 0, this is equivalent to 

U, + 1 = u,, + Mi C A  - ' ( 9 ,  + 1 - g , )  + At@ M-' ( F ,  - Ku,,) + O(At2) ,  

which, upon division by At and passage to the limit, yields (47). 
While the above is sufficient to also ensure that P ,  converges to (46), it may be helpful to 

demonstrate this more directly. Inserting the fin+ result into the PPE of the projection step yields 

A(P,+  1 - P , ) / 2  = C T ( I -  A t M -  'K)Z,-(g,,+ 1 -g , ) /A t+  O(At2), 
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which, using g,+ = g ,  + Atg,, + O(AtZ) ,  yields 

A( P,+ + P , ) / 2  = CTM-'(F,  - Ku,) -9, + O(At),  

and it is clear that (46) is recovered as At-rO. Finally, it follows that CTd,=CTM-'(F, -Ku, )  
- AP,=g,+O(At),  as promised. As in Projection 1, this scheme delivers a pressure that is O(At) 
away from that given by the PPE-even though we had hoped for more when designing the 
scheme. 

4.2.5. Projection 3. For completeness we present the associated SCM version of Projection 3, 

(0) Given uo with CTuO=gO,  Po ,  and Po, set n=O and do the following: 
(1) Solve 

but remark that we have not yet tested this scheme in the laboratory. 

for the intermediate velocity; i.e. solve 

( M  + AtK)ii,+ = M U ,  + At[f . -N(u, )u , , -  M M ,  C ( P ,  + AtP , ) ] .  

(2)  Project ii, + and update the pressure via 6, + = u, + + A4 L ' Cq and CTu, + = g ,  + ; i.e. first 
solve A q  = CTii,+ -9 ,  + for q, then compute u,+ =iin+ - M i  C q ,  P,+ = P,  + A d ,  
+ 3 q / A t  and P,+l =(Pnfl -P , ) /A t .  

(3) Bump n and go to Step (1). 

Remarks 

1. Po could be obtained by taking one very small time step with, for example, forward Euler, as 

2. If this scheme truly has lower-order projection error, it should probably be implemented 

3. The effective pressure gradient is 

shown earlier. 

with higher-order ODE methods (say second-order or better). 

GPleff = M i  ' M M ,  C( P ,  + AtP,)+ M i  ' ( M  + AtK)M,' C (  P,+ - P,  -A tPn) /3  
= M i 1  MML'  C[2 (Pn+AtP , )+  P , + , ] / 3  + O(At3) .  

4. A subcycling strategy (at least when c+ > O(At)),  similar to that proposed earlier for 
Projection 2, might even be more useful here, in which case the pressure estimate during the 
intermediate velocity calculation would be changed from P, + AtP, to P,  + ( t  - t , ) P , d  la 
our old explicit projection method.' 

4.2.6. Two bad schemes. One thing we would like to point out/admit, in the hope of saving 
others from wasting time in the future, is that we were actually foolish enough to try a seemingly 
obvious modification of two of the schemes described earlier, while still deep under the influence of 
'try CM for momentum, LM for pressure'. (Also, Fortran is usually easier than mathematics.) One 
scheme is based on the PPE approach and the other on the Projection 2 method. Both simply omit 
the M M ,  factor in the discrete pressure gradient of their respective algorithms. The omission is 
simple and may appear innocuous (perhaps even desirable!), but the resulting schemes, and their 
analyses, are not. Suffice it to say that the schemes are neither consistent nor stable. A modified 
momentum equation is the only successful approach that we have found-and it is signijcant that 
this is the same momentum equation that underlies the Projection I scheme. 
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4.2.7. Global errors in time. While too lengthy to reproduce here (see Gresho et al l4  for details), 
it can be shown, via global error analysis (local error analysis is not as useful for DAEs as it is for 
ODES) applied to the Projection 1 and Projection 2 schemes presented above, that: 

(1) The global errors (difference between approximate and exact solutions of the DAEs) in both 
velocity and pressure are O(At). 

(2) The local error (difference in solutions after one time step, assuming that both started from 
the exact solution), which is easily obtained from the global error results, is O(At2) in 
velocity and O(At) in pressure. 

Thus local errors in velocity accumulate to give larger global errors (as in most ODE methods), 
while those in pressure do not. Of course this error analysis, besides demonstrating the important 
fact of convergence as At-0, says no more than ‘one scheme is as good as the other’. We must 
therefore rely on some numerical experiments-at various finite At-to help select the best and 
reject the worst. 

A final remark on stability: since Stokes flow appears to be (i.e. experimentally) unconditionally 
stable, it is probably true that the mixed mass projection step does not affect the stability of the 
intermediate velocity calculation. 

4.2.8. Summary comparison of the schemes. Before presenting numerical results and trying to 
‘pick a winner’, it may be useful to summarize the salient features of the three schemes that we have 
tested. This is done in Table 11, in which the descriptors (e.g. least, most) are not intended to imply 
large differences; indeed most of the differences that we have observed have been quite small. 

Table 11. A comparison of three nearly consistent mass schemes 

Property PPE Projection 1 Projection 2 

Div-free? No Yes Yes 

Start-up Not smooth; No problems Must solve a CM 
P,-P,,=O(l) in At matrix problem 

Steady state u OK u and P are in u OK 
P OK error by O(At);* P OK 

div u=O(At )O(Ax)  div u=O div u = O  

Global accuracy 
in time 

O(At)  in u and P Ditto 
~ 

Ditto 

Local accuracy 
in time 

O ( A t 2 )  in u 
O(At) in P 

Ditto Ditto 

Spurious dissipation 
~~ ~ 

Largest Intermediate Smallest 

Stability Least Most Intermediate 

* At least in the boundary layer, s = O [ J ( v A t ) ] .  

used (first u, then u) and usually converges in 1-10 iterations. 
(i) All schemes involve the solution of ( M + A t K ) x =  b for which the diagonally scaled, conjugate gradient method is 

(ii) All schemes involve the solution of an ‘ L M  Poisson equation, with A =  CTML ’ C. 
(iii) The cost per step of each is about equivalent, though P1< P2 < PPE. 
(iv) The last two entries in the table are based on numerical results. 
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While Projection 2 seems to show more advantages and less disadvantages than the others, it is 
somewhat disappointing that it shows up to be little better than Projection 1, both in theory (i.e. in 
the ODE/DAE theory) and in practice. Except for SCM, the PPE method displays only 
disadvantages and is no longer advocated. 

A final remark: in all of the schemes, it is of course permissible to lump the mass everywhere 
( M + M , ) ,  in which case they simplify to schemes that are closer to finite difference projection 
methods. 

4.2.9. Final remarks on Projection 2. We have experimentally determined the following 
behaviour: if the pressure update is computed as P, ,  = P, + ycp/At, where y = 2 defines the 
‘conventional’ Projection 2 method, then the scheme still works pretty well (especially for the 
velocity) for any value of y < 2, i.e. 0 < y < 2, and y > 2 is actually unstable-xcept perhaps for 
Stokes flow. In the results to follow we had y = 1; this is because we had not yet discovered that 
y = 2 is theoretically better. We note also that: 

(i) y = 0 actually converts the scheme to a slightly modified Projection 1 scheme. 
(ii) y = 2 is optimum from the local analyses presented earlier. 
(iii) Global effects (i.e. accumulation)-neglected in most of the analysis-are probably the 

cause of the apparent success for all y < 2, although detailed understanding is still lacking. 

We believe that a good subcycling strategy might, probably with y=2,  lead to a more cost- 
effective Projection 2 scheme. 

5. NUMERICAL RESULTS 

5.1. Lid-driven cavity 

Before demonstrating the new schemes on the type of problems for which they were designed, 
we shall jump directly to a steady state simulation, with a (nearly) known solution, to help remove 
any doubt that mixed mass ‘works’. The test problem is one of the standards: the (non-leaky) lid- 
driven cavity. Here we use the same graded 50 x 50 mesh that we used in Gresho et al.’ and pick 
one Reynolds number: 5000. The time step was 0.025 using TR, five times larger than the CFL 
stability-limited At used in our explicit code, and gives a maximum Courant (or CFL) 
number of -2. 

Figures 1 and 2 show the streamlines and pressure contours from the Projection 2 scheme. 
Similar results from the Projection 1 scheme are shown in Gresho and Chan,” and PPE results 
are not shown because, in fact, all three schemes delivered virtually identical results-consistent 
with the theory and showing that the SS At-effects from PPE and Projection 1 are small for this 
problem. The $- and P-contours look ‘just like’ those in Ghia et aLZ4 for $ and in Gresho et al.’ 
for P .  

A more quantitative comparison is offered in Tables I11 and IV, wherein relevant extrema in 
streamfunction and velocity are tabulated. Unless otherwise stated, all results are from the new 
SCM schemes. The key observations seem to be these: (1) all three SCM schemes deliver 
essentially the same results; (2) all three deliver weaker flows than desired; (3) the LM results from 
Projection 1 (which would agree with those from PPE and Projectibn 2) agree well with the SCM 
results; (4) when At is reduced to that used in the explicit (forward Euler with BTD) code, the 
eddies strengthen and the solutions become closer to the right answer. 

Hence we conclude that all schemes ‘work’, but that semi-implicit time integration with BTD is 
subject to noticeable ‘excess diffusion’ at S S  when At is not small. (As we shall show later, the 
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Figure 1. Streamfunction for the lid-driven cavity at Re=SMX): Projection 2. Contour values are: 
F = - 0.07 A=OO 
G =  -0.05 ~ = 1 0 - 7  
H = -0.03 c=10-6 

I = -0.01 D =  10-5 
J =  -0~OO01 E = 5 x  lo-’ 
K= - 1 0 - 5  F = O . O I  
L = - 1 0 - 7  G=0.00025 

H = O~OOo5 
1 = m 1  
J=0.0015 
K = 0.W3 

excess diffusion is not exclusive to SCM nor to semi-implicit integration nor to SS,  but is caused by 
BTD itself and is not even diffusion.) Also, the ad hoc procedure of employing mixed mass matrices 
is Seen to be legitimate at steady state; indeed, more of the error is caused by BTD at ‘large’ At than 
by SCM. 

5.2. Vortex shedding 

Our first LM failure/disappointment with vortex shedding was presented in Gresho et al.:’ the 
LM scheme lost the eddies in a Karman vortex street because the graded mesh became too coarse 
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Figure 2. Same as Figure 1 except isobars. The large pressures near the upper right corner are not plotted. Contour values 
are: 

I = - 0.020 A = - 0.060 
B =  -0055 J =  -0.015 
C= -0.050 K= -0.010 
D =  -0045 L= -0.005 
E=-0.040 M= O’OOO 
F=-0035 A =  0.005 
G=-0.030 B= @010 
H = -0.025 

in the wake, i.e. downstream of the cylinder. We return to that type of problem here to show that 
SCM ‘delivers’ where LM (still) fails. The cause of this failure is the inability of the LM four-node 
element to accurately advect ‘short’ waves; e.g. for a wave (of a Karman vortex street, say) that has 
a length (A) of 4Ax, the LM phase speed (relative to unity) is only Uk=(sin 0)/8=0*64, where 
8 = 2nAx/rl, whereas for CM it is Us = U: x 3/(2 + cos 0) N 0.95. So, based on previous results, we 
designed a graded mesh that forces the shed vortices to move from a fine mesh, where they are 
generated, into an ever coarser mesh, in which transport by advection should prevail but will 
finally fail; i.e. we now test SCM on a similar problem. 

Because our most-used codes are largely restricted to logically regular meshes for efficient 
vectorization (and because our usual simulations are in the atmospheric boundary layer and do 
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Table 111. Streamtunction extrema 

Primary Top left Bottom Bottom Bottom 
vortex vortex left right (large) right (small) 

PPE - 0,087 + 0.0007 1 0.0013 0003 1 -7.3 x 10-7 
Projection 1 - 0.085 + 0.00070 00013 0003 1 - 9 . 0 ~  10-7 
Projection 2 - 0'088 + 0.00072 0.0013 0.003 1 10-7 
Projection 1 with LM - 0.085 + 000072 0.0013 0.0032 - 1.3 x 
Projection 1 with LM -0.102 + 0.001 1 0.0015 0.0037 -2.9 x 

and At = 0.005 
Gresho et al.' -0.109 +0.0012 0.00 1 5 0.0039 - 5.2 x 
Ghia et al.24 -0.1 19 +09015 0-00 1 4 0-003 1 - 1-4 x 

Table IV. Velocity extrema 

Umin(x = 0.5) Vmin(Y = 0.5) Vmax(Y =0.5) 

U m i n  Y Vmin X Vmax X 

PPE -0.376 0.074 - 0.504 0.953 0.358 0.074 
Projection 1 -0.377 0.074 -0504 0.9 5 3 0.357 0.074 
Projection 2 -0'379 0.074 - 0507 0.953 0.360 0.074 
Projection 1 with LM -0.376 0.074 - 0503 0.953 0.357 0074 
Projection 1 with LM -0.425 0074 - 0.560 0953 0.4 1 3 0074 

Gresho et nl.' - 0.426 0.074 - 0.563 0.953 0.4 19 0.074 
Ghia et al.24 - 0436 0.070 -0.554 0.953 0.436 0.078 

and At = 0,005 

not need 'helter-skelter' meshes), our current simulation deals with flow past a square cylinder. (All 
our previous work and most of all other work on vortex shedding has focused on circular 
cylinders.) 

This less studied and probably more difficult simulation was based largely on the work of Davis 
and Moore,25 who have performed what seem to be the most thorough studies-both experi- 
mental and numerical-to date. (See also Davis et a1.26 for related and more recent work using 
different boundary conditions.) Although warnings by R. W. Davis (personal communication) 
increased our initial concern regarding the added difficulty of computing flow past sharp corners, 
we still believed that such a simulation would be the easiest way to make our point, which we 
repeat for emphasis: we desired to see if the new method could better advect the shed vortices; we 
did not desire to embark on a detailed study of the (interesting) physics of vortex shedding past a 
square-and we do not. 

A sequence of mesh designs-including a finer mesh than that to be shown, in which both LM 
and CM did a fairly good job+volved to that shown (in part) in Figure 3. The key features of this 
mesh are: (1) the grid design near the (unit) cylinder is rather fine (e.g. a factor of at least two finer 
than that of Davis and Moore; we used 20 elements to their 10 on each face, and our minimum 
Ax(Ay) was 0-02 uis-d-uis theirs of - 010) to hopefully at least generate vorticity accurately-not 
to imply that Davis and Moore did not; (2) the elements are graded away from the square in such a 
way that A/Ax (where 1 is measured as the 'length' of a vortex pair) would be - 4  at the exit of the 
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Figure 3. Details of mesh design near cylinder. The 400 (of 4898) elements shown inside the square are ‘inactive’ in that u 
and P are set to zero there 

computational domain (in fact, Ax,,, N 1.8 at x = 25); and (3)  the logically regular mesh restriction 
is obviously not optimal for this problem since a ‘too fine’ mesh exists in too much of the domain. 

The cylinder is centered at (0, 0) and is modelled as ‘unconfined’ (tow-tank simulation) with 
the following BCs: u = 0 on the cylinder; u = 1, u = 0 at the inlet and at y = k 6;  and P = vau/dx, 
d v / a x = 0  at the outlet, li la (Id). The latter are the natural BCs associated with our weak form 
of the NS equations and, for high Reynolds numbers, the first of these is nearly equivalent to 
setting P=O at the outlet since Re= l / v $ l  in the non-dimensional case. It is to be emphasized, 
however, that P = vau/dx is enforced weakly so that the (more important) divergence-free 
constraint can be enforced strongly-a nice feature of the FEM, since the continuity equation is of 
paramount importance for incompressible flows (see GS36 and Gresho ( 1991)37). 

We remark/admit that the simulations below did not use the technique (on r,) presented in 
Section 3.1.4 for OBCs, since we only recently derived it. Rather, the following simpler-yet still 
effective-procedures were employed: 

(i) cp = 0 on Tz for Projection 1 rather than cp = - TF,( T )  ci la (22)  
(ii) cp=O on r2 for Projection 2 rather than cp= - ( T / Z ) [ F , ( T ) + P , ]  d la (23). 

The main reason that these BCs ‘worked’-i.e. did not cause us to be suspicious of the quality of 
the results-is that the use of F, = 0 saved us. Either OBC will then give P = O  at the outlet, and 
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that is what we observed. In the general case, however, with F,  # 0, the simpler BCs necessarily rely 
on the BHM to give decent results, whereas the preferred OBCs would give more accurate results 
because the BHM is then hardly needed. (For example, if Projection 1 is employed with the ‘P = 0’ 
BC in a situation where Pshould be ‘large’ (i.e. far from zero) on r, the BHM causes the pressure to 
rise from zero on r to the proper value ‘just outside’ 6.) 

The Reynolds number here is 250 and the time step is 0.05 using the trapezoid rule for diffusion. 
This At gives a maximum Courant number of about 4+ (just above the leading corner) and a 
maximum grid Reynolds number (uAx/v) of 400-500 (near the exit). 

The principal and self-explanatory result is shown in Figure 4: even semi-consistent mass is 
capable of transporting vortices through a mesh that is too coarse for the lumped mass 
approximation. The results for all three SCM schemes were virtually identical, and thus Figure 4 is 
our last pictorial comparison of all three. These and subsequent snapshots are taken at the same 
time, i.e. when the vertical velocity on the centreline at x = 1.0 passes through zero from above. The 
relative streamlines (observer moving at speed 1) in Figure 5 show the individual eddy pairs and 
their graceful exit from the domain. 

Figure 6 shows a zoom picture of the streamlines close to the box, and the corresponding 
velocity vectors and pressure are shown in Figure 7. It is interesting to note that at some times 
during the shedding cycle, fluid is actually sucked forwards along the top or bottom surface, and 

0. 

0. 

x 

0. 

0. 

I I , I I I I I , I I I 
-5 0 5 10 15 20 25 

X 

Figure 4. Snapshot of streamlines at the ‘same’ time for four schemes: (a) PPE with LM; (b) PPE with SCM; 
(c) Projection 1; (d) Projection 2. The tick marks show the lengths of the last nine elements 
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Figure 5. Relative streamlines at the same time as in Figure 4 (Projection 2). Contour values are: 

B= -0.8 B = 0.4 
A = - 1 . 0  A=0*2 

C =  -0.6 C=0.6 
D=-0.4 D=08 
E= -0.2 E= 1.0 

flow separation occurs in many places. This behaviour is of course related to the extra ‘difficulties’ 
of sharp corners mentioned above. 

Vorticity is shown in Figure 8 (Projection 2), where the ‘shedding process’ from the two leading 
corners is particularly clear. The maximum value of is - 43 and occurs on the surface at the first 
node up from the lower left corner. The minimum value is - -30 and occurs at the first node 
down from the upper left corner. (During the course of a full cycle, of course, the maximum and 
minimum values of vorticity will be the same (in magnitudetand probably occur at the same 
locations as above, suggesting that the locations of the singularities are on the upstream edges of 
the box.) 

The variation of u and u with y at the upstream face of the square is shown in Figure 9. The 
variation of pressure with y at both upstream and downstream faces is shown in Figure 10. Both 
the nature of the pressure singularities and the close agreement between the two mass matrix 
approximations (LM and SCM) are evident in these figures. (When the mesh is fine enough, all 
‘legitimate’ schemes ‘work’. Alternatively and preferably, these results again demonstrate, or at 
least strongly suggest, consistency of the new mixed mass methods.) 

In Table V we list a few other relevant quantities and compare them with others. The shedding 
period (inverse of Strouhal number) and the wavelength are based on the passing of two vortice- 
one shed from above and one from below the cylinder. The drag is virtually all ‘pressure drag’, 
while viscous shear stress contributes 5%-6% to the total lift. Davis and Moore2’ ignored viscous 
effects. Perhaps the most disturbing feature of these results is the seemingly very large lift 
coefficient and its wide variation from scheme to scheme, a result we have seen before for a circular 
cylinder. a 

To help reconcile this issue, a brief independent check was made. Another FEM code 
(FIDAP2”) was run to near quasi-steady conditions (wavelength of - 7 & 1 and still changing) 
using a similar mesh and one of the best 2D elements for incompressible flow: nine-node 
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Figure 6. Streamlines close to cylinder (Projection 2). The separation streamline is$ The contour levels are: 
A =  -1.00 E=0.15 
B =  -0.75 F =01556 

D= -0.25 H = 0.20 
A =  0.00 I=0.25 
B =  010 J = 0.50 
C =  0.13 K=0.75 
D= 0.14 L= 1.00 

C =  -0.50 G=0.175 

biquadratic velocity with three-node linear pressure (and consistent mass). The results were rather 
comforting even though not really conclusive; a spot check (at one particular time during the 
shedding cycle) gave a lift coefficient of about 1.3. It is also worth mentioning that Davis and 
Moorez5 found that the lift coefficient varied markedly with Reynolds number. Incidentally, the 
FIDAP code predicted a shedding period of -7. 

A brief cost summary is as follows: for one shedding cycle (- 150-160 time steps at At = 0.05) the 
CPU cost was -35 s and the 1/0 cost was -6 s on a CRAY-1s. 

The differences in results from ostensibly equivalent SCM schemes and from the two 
'equivalent' LM schemes are not easy to explain, but we believe they are related to the overall 
difficulty of this simulation and suggest that asymptotic analysis does not yet apply-we do not 
have converged solutions in either space or time. Also, and unfortunately, the extreme sensitivity 
of the results obtained to the schemes used, combined with a lack of knowledge of the right answer, 
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Figure 7. Vectors and isobars near cylinder. The contour levels are: 
A = - 1.650 G = -0.2527 
B =  -1'417 H = -0.0197 
C =  -1.184 A =  0.2132 
D=-0.9514 B =  04461 
E=-07185 C =  06790 
F=  -0.4856 
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leaves us unable to even estimate the relative accuracy of the methods. The next test problem was 
dmiuned to helo fill in these (and other) gaps regarding comparison of the schemes. 
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Figure 8. Vorticity contours close to cylinder. Extreme values near the leading corners are not plotted. The contour levels 
are: 

A=-10.0 A =  2.0 
B =  -8.0 B= 4.0 
C =  -6.0 C =  6.0 
D =  -4.0 D=  8.0 
E =  -2.0 E = 10.0 
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Figure 9. Horizontal (circles) and vertical velocity versus y at x =  -0.5, from Projection 1.  Both SCM and LM (heavy 
lines) results are shown 

wherein a Burgers’ vortex (related to a Lamb vortex) is actually used as a model of a dust devil), we 
settled on a similar and perhaps simpler (but more discontinuous) vortex of compact support that 
we call a triangle vortex. Like a Rankine vortex, it has a core of solid body rotation (constant 
vorticity). But at r = R  we switch to a decreasing linear function of r until r = 2 R ,  where the 
tangential velocity returns to zero. Specifically, our vortex IC is (before adding the translational 
velocity) 

u , ( r ) = u o r / R  for O < r < R ,  

u4(r)= u0(2 - r / R )  for R < r  < 2R, 
u+=O for r > 2 R ,  

where uo = 1. 
Figure 11 shows this initial velocity field as well as the corresponding vorticity, 

( = ( l / r ) ( d / & ) ( r u 4 ) ,  and pressure, P(r )=J‘  u 2  dz/z+constant, in which the constant was selected 
to give P=O for r 2 2 R .  The two discontinuities in [ ( r )  make the problem ‘interesting’. We used a 0 4. 
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Figure 10. Pressure versus y at x =  -0.5 (circles) and x =  +0-5. Again, SCM and LM (heavy lines) are plotted 

Table V. Some global quantities associated with vortex shedding 

Shedding Drag Lift 
Source period Wavelength coefficient coefficient 

PPE 7.8 
Projection 1 7.7 
Projection 2 7.9 
Projection 1 with LM 7.2 
PPE with LM 7.7 
Davis and Moorez5 5.9-6.3 
Okajima*' 7.1' 

Rather variable owing to poor grid resolution. 
Numerical (several meshes) and experimental. 
Experimental value. 
A crude estimate from his Figure lqb). 

7.7 
7.7 
7.5 
5.6" 
7-1" 
5.9 
6.2d 

1.85-2' 12 - 1.40 to 1.40 
1.79-2.05 - 1.32 to 1.32 
1.95-2.39 - 1.75 to 1.75 
1.862.08 - 1.20 to 1.20 
1.86-2.26 - 1.50 to 1.50 
1.73-1.81 - 0.50 to 0.50 
- - 
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Figure 11. Initial conditions for the triangle vortex problem 

uniform mesh of 80 x 20 elements to cover a domain that is one unit high and four units long. The 
(full) radius of the triangle vortex is 8Ax, i.e. 4 6 4  = R) for ud to rise from 0 to 1 and 4 A x  to come 
back down. The initial velocity is shown again in Figure 12, centred at x = y = 05,  as a vector field 
in our (x, y) co-ordinate system. (In fact, however, the initial velocity shown in Figure 12 is the 
discrete projection of the analytical uo(r), so that (43c) is satisfied.) 

We ‘solved’ this problem using four methods (PPE, Projection 1, Projection 2 and PPE/LM) 
many times at many different At’s. The principal results are these: (1) for C 6 - 0  1 (C = uAt/Ax 
with u = 1 and A x  = 0.05, and we point out that C,,, N 2C since the maximum speed is - 2), the 
three SCM schemes delivered results that were so close to each other that they appeared 
graphically to be the same (Projection 2 results are shown below); (2) Projection 1 and 
Projection 2 agreed even more closely; (3) the LM results are not very accurate; (4) the spurious 
damping caused by BTD is ‘too large’-a point we shall return to towards the end. 

Figure 13 shows the relative streamlines as the vortex moves through the mesh for C = 0 1  (the 
results for smaller values of C look essentially the same, whereas those at larger values show 
additional phase lag and distortion owing to time truncation error.) 

Virtually no phase lag is present using SCM, and both results (especially LM) show a ‘falling’ 
vortex, a result that seems spurious and whose cause is not obvious-it is probably related to the 
asymmetry in initial conditions (reversal of the initial circulation direction causes the vortex to 
rise) combined with truncation error (a larger At accentuates the effect), perhaps explainable by 
appeal to group velocity analysis/argument (in which LM evolves as particularly poor). The last 
snapshot (t=3-5) is shown to permit some assessment of the utility of the (natural) outflow 
boundary conditions. 

The (theoretically discontinuous) vorticity field evolution is shown in Figure 14. Whereas the 
SCM schemes capture and translate the initial field reasonably well, that from the LM method is 
noticeably degraded even by t =  1. For t >  1, the spurious trajectory, with resulting boundary 
interaction, further distorts the vorticity field, although the trailing wiggles, as well as the phase 
lag, are caused mostly by dispersion error. 
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Figure 12. Initial triangle vortex velocity field 

The corresponding pressure fields are shown in Figure 15. Again, the SCM has done a markedly 
better job of preserving the size and shape of the pressure ‘low’. The interaction of the isobars with 
the outflow boundary is interesting, since the boundary conditions are trying to set P=O there. A 
‘totally unbelievable’ pressure field has a surprisingly small effect on the velocity field+specially 
for SCM. 

Finally, Figures 16 and 17 provide a different perspective on the flow field and reveal the 
asymmetry mentioned above. The vortex now clearly appears as a perturbation to a uniform flow. 

Having demonstrated the main point (the ‘good news’) to be made regarding SCM vis-a-vis 
LM-and we believe but did not demonstrate that a fully GFEM (CM) simulation would not 
differ much from SCM, at least with respect to vortex size, shape and location-we now turn to the 
‘bad news’ portion of this research project alluded to earlier: the BTD technique for the (vector) 
equations of motion seems to be definitely inferior in its performance to that for which the method 
was originally derived-the (scalar) advection-diffusion equati0n.l. And it took some years and 
a special and difficult test problem to bring this deficiency to light; i.e. numerical solutions to the 
incompressible Euler equations, in which the initial vorticity field is discontinuous, would be 
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Figure 13. Relative streamlines at t=O, 1, 2, 3, 3.5; +l1=0.02(0.02)0.18 
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Figure 14. Vorticity contours at the same times: <= -4, -2, - 1 ,  1,  2, 4, 8, 10 
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Figure 15. Pressure contours at the same times; P =  -0.7(0.1)-0.1, k0.05 
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Figure 16. Absolute streamlines at t = 2 :  SCM 

expected by few to be easy, Previous simulation of 'more reasonable' problems showed much 
smaller (and usually tolerable) deleterious effects from spurious 'diffusion'. The problem is perhaps 
best revealed in Figure 18, showing the serious lack of conservation of vortex kinetic energy 
(defined here as EL = uTMLu/2). The most striking and most disappointing result is the rapid decay 
of EL for all but very small values of C (e5cept for LM at C=O-Ol, an anomalous result that we 
cannot explain, although the indefinite advection operator combined with group velocity errors is 
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Figure 17. Velocity vectors at t = 2 :  SCM 

a likely candidate); indeed, the decay of EL using SCM is monotonic at all values of C studied. In 
the earlier figures the decay is present though not so apparent; e.g. the maximum in $ at t = 3 in 
Figure 13(a) is only 89% of that at t = 0, whereas for C = 0.01 it is 95%, a mere 6% gain for a factor- 
of-10 increase in cost. (We need not be reminded that any scheme that requires C + 1 to deliver 
acceptable results is not a very good scheme.) 

Before expanding further on this negative virtue of BTD, let us review and summarize the 
additional salient tests that we. made before becoming fully convinced of the severity and veracity 
of the problem. 

(1) Two independent GFEM codes-FETISH (our own) and FIDAP (FD1’s)-were run on a 
closely related problem (as was our new code and our old explicit code u la Gresho et al.:’ 
pure rotation (circular streamlines) of the same vortex (in a unit square domain) with, of 
course, free-slip BCs). The results, even using the dissipative backward Euler (BE) scheme for 
time integration (and wiggle suppressant), showed that BTD is relatively quite ‘dissipative’; 
i.e. BE alone (C= 1.0) was much less dissipative. In one experiment (courtesy of M. S. 
Engelman of FDI) using FIDAP-which has the flexibility of testing all sorts of combina- 
tions-the GFEM equations were integrated via BE, and the BTD ‘flag’ was activated (a 
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procedure that adds the tensor viscosity, Atuiuj/2, to the physical value and is theoretically 
justified/required only for FE). The results were nearly the same as those using explicit Euler 
and BTD (wherein BTD is required to stabilize the time integration). Since we also obtained 
similar results using our FE/BTD code, we concluded that the key problem is the use of 
BTD-not in the time integration scheme, since explicit, semi-implicit and implicit all 
behave similarly if BTD is included. In fact, another BE FIDAP experiment was performed 
(by M. S. Engelman) in which BTD was subtracted-a result that should ‘theoretically’ make 
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the scheme less dissipative and neutrally stable: for C= 1-0 the calculation was unstable, 
whereas for C=O.l it was both stable and only very slightly dissipative. 

(2) We solved several pure advection (scalar transport) problems using the given (triangle 
vortex) velocity field and learned that the original BTD theory is then vindicated: spurious 
dissipation is nearly absent if streamline gradients are too (as in the pure rotation case), even 
when SS conditions are attained. Simulations in which streamline gradients occur (the 
general case) are, however, slightly dissipative-in accordance with ‘BTD theory’ presented 
in Gresho et al.’ and Gresho and Chan.’ The decay rate is, however, much less than that for 
the velocity field when Euler solutions are attempted. 

(3) We solved the advection equation simultaneously with the NS equations for the pure 
rotation case. The IC was a top-hat profile: constant from r =O to r = 4Ax, zero thereafter. 
Results showed good conservation of the passive scalar while the advecting velocity field 
was weakening quickly and monotonically (and would, it seem, eventually come to rest). 

(4) Finally, Figure 19 shows the results when a passive scalar (say S) is added to the inviscid 
translating vortex problem-using CM in the scalar advection equation. The IC was the 
same as that given for u+ described earlier-think of a ring of ink in the (frictionless) water 
with a peak concentration at the annulus centre (i.e. at r=R=4Ax)-the peak of the 
concentration triangle coincides with the peak rotational speed. While not a particularly 
exciting (i.e. accurate) result-the sharp peak has levelled off and the contour lines are rather 
distorted-it is true that the ‘energy’ of S (i.e. the quadratic form S’M,S) decays slowly 
(c 3% loss for 0 < t<  3 with C=O.l) during the simulation, in marked contrast to the kinetic 
energy of the fluid, which (Figure 18) dropped by almost 20% at the same value of C. The 
distorted S-contours relative to the better-looking contours of $ (Figure 13(a)) and i 
(Figure 14(a)) seem to be a direct consequence of the extra ‘diffusivity’ (and wiggle 
suppressant) that BTD bestows upon the water but not upon the ink; i.e. the Euler 
simulation should be even more difficult than portrayed by the BTD schemes. 

The inevitable conclusion from these experiments and further analysis, summarized below, is 
that the BTD ‘correction’, derived and justified for advection-diffusion, does not simply 
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Figure 19. Contours of a passive scalar, corresponding to the flow field given in Figure 13(a). Contour values: -0.3, -0.2, 
-0.1, 0’1(0.2)09 
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‘transplant’ to the NS equations as we (and others) have naively assumed. The explanation of this 
theoretical faux pas, while not yet fully verified, seems to be the following: whereas the 
(unmodified) explicit Euler scheme does indeed introduce a negative (and destabilizing) but known 
tensor diffusivity directed along streamlines for the (scalar) AD equation, which needs to be 
‘balanced’ via BTD, such is not the case for the (vector) NS equations; in fact, the portion of the 
local error from the advection term that ‘looks like’ (streamline) diffusion may even be cancelled by 
a similar truncation error related to the pressure gradient. Another portion of the explanation, and 
one that accounts for the monotonic decay of kinetic energy in the case of a purely rotational 
inviscid vortex, is this: since the BTD term is added separately and independently to each 
(Cartesian) component of the NS equations (u and u), it follows that dissipation must occur unless 
both u and u are constant along streamlines. 

To obtain further insight, let us transform the 2D Euler equations, with BTD, 

a U  At At 
at 2 2 -+ u * v u  + V P  =- v uu * v u  =- (u . v y u ,  

to intrinsic co-ordinates-i.e. to a co-ordinate system that follows the (instantaneous) streamlines, 
s representing the co-ordinate along a streamline and n the (crosswind) co-ordinate normal to it 
the result is, in the streamline direction, 

where q = ( u (  and K is the principal curvature of the streamline. Since ( q 2 A t / 2 )  looks like a 
diffusion coefficient, the term (q2At /2)a2q/as2  does look like streamline diffusion (and would 
vanish if q were constant along a streamline). But the remaining term, - ( q 2 A t / 2 ) ~ ’ q ,  represents 
pure damping (not via diffusion) and, for K # 0, would cause a monotonic decay of q. For the circular 
streamlines of the pure rotation case this term is - Atq3/2r2, where r is the radial distance from the 
vortex centre. Since q = Iu,( for this (cylindrical co-ordinate) case, and aq/ds = a2q /as2  = Jp/as =0, 
we get the simple result 

&,/at = - Atu;/2r2, 

showing monotonic decay of streamline velocity. If we can be permitted to integrate this equation 
in time for a fixed r, we obtain 

u,(r, t)=u,(r, O)/,/Cl +Atu:(r, O) t / r21 ,  

a result that, unfortunately (!), describes rather well the observed behaviour in the case of pure 
rotation. 

This result, which is the cause of the KE degradation, is actually a consequence of losing 
tensorial invariance when transforming the equations: the ‘BTD term in the &equation is a direct 
consequence of a misrepresentation of the curvature terms (or Christoffel symbols) caused by 
(u.V)’u and (u- V)’v during the transformation (it is the u $ / r  curvature term which ‘carries 
through‘ the transformation process and pollutes the final result). Thus the BTD problem is a 
curvature error resulting from the way it was applied (or mis-applied) to the vector momentum 
equation. 

In any case, the obvious ‘fix’ seems, just as obviously, too expensive (but further effort may prove 
otherwise): i.e. (i) rotate the x - y equations, at each node and at each time step, to streamwise and 
crosswind co-ordinates (tan 0 = u/u ,  etc.), (ii) add At I u 1’/2 to the streamwise momentum equation 
(only) and (iii) transform back to the Cartesian equations. This procedure-or one equivalent 
thereto-seems to be the only way to preclude the spurious effect in the general case. And, as of 
this writing, it appears to be too expensive to contemplate seriously. One should probably either 
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accept the BTD curvature crisis or design a better scheme-perhaps based on leap-frog for 
advection, or one of the Taylor-Galerkin methods proposed by Donea et or on one of the 
TWS (Taylor weak statement) schemes of Baker and Kim.33 A final remark: the omission of BTD 
renders the Euler equations unconditionally unstable. 

Just prior to mailing this paper, we received a report by Tezduyar et ~ 2 1 . ~ ~  in which the standing 
inviscid triangle vortex was computed in several ways, old and new, with the following results. 

(1) The KE is conserved using a streamfunction-vorticity formulation-thus adding further 
credibility to our explanation since the t,-u method involves a scalar transport equation. 

(2) The KE degradation of the SUPG (streamline-upwind Petrov-Galerkin) scheme of Hughes 
and Brooks is quite similar to that from our BTD scheme.35 

(3) By designing special (and in our view, expensive-looking) three-and six-step schemes in 
which the ‘SUPG supplement’ is judiciously applied, the former was a noticeable improve- 
ment but still rather dissipative, and the latter retained the KE with virtually no loss. 

(4) A ‘Galerkin formulation’ was unsuccessful (wiggly), in contrast to the results that we 
obtained with the FETISH code and that M. Engelman obtained with the FIDAP code. 

Finally, returning to Figure 18, one method of ranking the three SCM schemes presents itself: 
Projection 2 decays (slightly) more slowly than Projection 1, which decays more slowly than PPE. 
Another ranking, not obtained from Figure 18, relates to stability and is this-for the same 
translating vortex problem: Projection 1 is (very slightly) more stable than Projection 2, and both 
are more stable than PPE-by a factor of several. For example, C < - 4 is stable for the first two, 
but PPE required C <  - 1. (LM (PPE) is stable for C,< - 3.) 

6. CONCLUSIONS 

In the first part of the paper we have derived, reasonably carefully, several types of projection 
method approximations to the solution of the time-dependent incompressible Navier-Stokes 
equations. Hopefully the presentation is useful-if for no other reason-by virtue of its attempt to 
remove the veil of mystery that has always enshrouded these methods. Careful attention to 
boundary conditions and other details has led to methods that are optimal in the sense of 
achieving low slip velocity (vortex sheet generation) and higher regularity near boundaries. 
Simpler and probably more cost-effective schemes were also proposed and justified practically via 
numerical results, and theoretically via showing the inherent satisfaction of higher-order 
equations that exhibit boundary layer behaviour in such a way that correct results are realized 
everywhere except within this (spurious) boundary layer, whose thickness can and should be kept 
small via At 4 12/v ,  where I is any relevant physical length scale. These simpler schemes inject wall 
vorticity in a different but legitimate manner. 

All projection methods studied herein generate a spurious boundary layer in which some 
aspects of the (inner) solution deviate substantially from those of the Navier-Stokes equations. 
Away from this boundary layer, however, the (outer) solution from these methods will usually 
agree well with that from the Navier-Stokes equations. 

We make no claim regarding elegant mathematics; quite the converse in many respects. What 
we do claim is to have evoked a new understanding, hopefully sufficiently well communicated and 
with few enough errors that (i) these methods will be further developed and improved and 
(ii) better mathematics-by others-will follow. 

Based on current knowledge, the recommended scheme (at least via finite element imple- 
mentation) is the simpler version of Projection 2, via a second-order-accurate time integration 
scheme, in which all Dirichlet boundary conditions-intermediate and final (projected)-are 
those that apply to  the true Navier-Stokes equations. (We also derived appropriate-and 
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simple-boundary conditions for outflow boundaries.) If, however, a good approximation of the 
time rate of change of the tangential pressure gradient on r were somehow made available, then 
a mixed BC approach may be better; i.e. use the simple BC in the normal direction and the optimal 
BC in the tangential direction(s). On the other hand, the sheer simplicity of the simple version of 
Projection 1, in which a first-order time integration scheme is probably a proper match, still has 
much to recommend it, or at least to not condemn it-although the time step should probably be 
smaller than that for Projection 2. 

If projection error could be separated from time integration error and a proper subcycling 
strategy designed, it is possible that a version of the (simpler) Projection 3 method would be even 
better than Projection 2, which would of course also benefit from these improvements. Effort in 
this area is recommended, including more work on the accumulated effects of pressure updates- 
i.e. global analysis. 

In the actual computer implementation of projection methods via temporal and spatial 
approximations, semi-implicit techniques were developed and are advocated in which the implicit 
treatment of the viscous term entails the appeal to a biharmonic equation in order to describe how 
and why these techniques actually work in practice. (If explicit methods are employed for the 
viscous term, there is no mystery (or should not be), no spurious boundary layer and no higher- 
order equations to be satisfied, only a (frequently severe) stability restriction on the time step-and 
a large vortex sheet (plus other errors, not limited to explicit methods) if the projection is made too 
infrequently; e.g. via subcycling.) 

In the ‘finite element’ portion of the paper, Part 2, we have described, partially analysed, and 
demonstrated three schemes that retain the consistent mass matrix in the Navier-Stokes 
equations in a cost-effective way relative to using consistent mass everywhere; i.e. by lumping the 
mass only in the pressure gradient term and solving sequential and uncoupled systems in the 
context of semi-implicit time integration (implicit for diffusion, explicit for advection) and a 
Poisson equation. All three delivered nearly the same results and for nearly the same cost as a 
semi-implicit lumped mass scheme. For the problems studied, all three have been shown to be 
superior to lumped mass methods for flows in which advection accuracy is important, and to 
produce only small errors at steady state. While a relative ranking is difficult, the first of these, 
PPE, seems to be the worst in that it shows more disadvantages than advantages: (i) it displays an 
inconsistency at t = 0’; (ii) it delivers non-divergence-free solutions that are both larger than those 
from the equivalent lumped mass scheme and non-vanishing at steady state; (iii) it is slightly less 
stable; (iv) it is slightly more expensive and slightly more dissipative. Projection 1 has the 
disadvantage that even SS results depend on At. While Projection 2 has clear theoretical 
advantages over Projection 1, in practice the two schemes have thus far been so close that the 
simplicity and (very slightly) reduced cost of Projection 1 would seem to favour it. Nevertheless, 
we still prefer and recommend Projection 2, using the mixed-mass matrices when advection 
dominates and good phase speed is required. (The lumped mass Projection2 scheme may be 
better than mixed mass under certain conditions, such as Stokes flow or for simulations wherein 
only the steady state results are of interest.) Projection 3 is probably worthy of further 
development, and both higher-order methods would benefit from a good subcycling strategy. 

The concept of BTD (balancing (?) tensor diffusivity) has been shown to be less righteous for the 
incompressible flow equations-a vector system-than for the scalar transport equation for which 
it was originally derived (and still seems well justified). This problem, uncovered quite by accident 
during this research, appears to be manifested via spurious but non-diffusive damping of the 
streamwise velocity component, owing to a misrepresentation of the curvature (centrifugal force) 
term that is proportional to Ar and does not seem easy to remove. This deficiency would seem also 
to be present in at least some streamline-upwind methods currently in vogue. 
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If BTD is retained as is, rather small time steps would seem to be required in order to reduce the 
spurious dissipation to acceptable levels-at least for very high Reynolds number flows. Better 
schemes should probably be used. It should also be emphasized that the BTD curvature crisis in 
no way affects the other conclusions reached in this study. 

Finally, the mixed mass matrix concept, 'demonstrated' experimentally to be legitimate, must be 
so because M M ,  is close to the identity matrix in the appropriate sense and on adequate meshes. 
While it is never spectrally equivalent for any Ax, it seems to be so over the relevant (lower) portion 
of the spectrum, i.e. in the subspace in which most of the approximation process effectively takes 
place. Further theoretical efforts regarding stability are recommended. 
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APPENDIX: SUMMARY OF PROPERTIES OF PROJECTION OPERATORS 

General (continuum and discrete) 
Projection to div-free subspace: 
ga2=p,div @=O 
Q'I-p, Q2=Q; div Q=div 
Q@=O: w = p u + Q w = O ;  y projects onto the 
null space of Q, i.e. onto the space of div-free 
vectors 
pQ=O: w=Qu+pw=O; Q projects onto the 
null space of @, i.e. onto the space of vectors 
that are gradients of scalars 
I fuE gu and w =Qu, then u + w =u. Also, u lw ,  
i.e. IIullZ+.l(wII2=IIuII2, but only if n * w = O  
on r (continuum) 
The eigenvalues of @ are either 0 or 1 (ditto Q); 
11 y 11 = 1 (ditto Q), so that the projections are 
norm-reducing: w = pu-r 11 w 11 < /I u 11 (ditto Q) 

Continuum 

curl ga =curl 
Q=V(V2)- ' V -  

v * w = o  

63'1-v(v2)-'v' 

w = V 4  where 

(also, curl w = 0) 
(a, b)= ab, 

and II u 11 '= (u, u) 

v2f$ = v * u 
w=M;'C4 where 

A4=Cru 
- 

(a. b )  = aTM, b 
and 11 u I12=(u, u)  

(A symmetric projection p2, can 
also be constructed: 

which gives orthogonality in L,: 
(a, b)  = aTb) 

p2 5 I -M -112 CA-'CTM -112 
L 7  
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